Author Topic: Turbomole 7.3 released  (Read 587 times)

uwe

  • Global Moderator
  • Sr. Member
  • *****
  • Posts: 425
  • Karma: +0/-0
Turbomole 7.3 released
« on: July 16, 2018, 04:37:46 pm »
TURBOMOLE V7.3 has been released (July 2018)

New features:
  • PNO-CCSD(T0) and PNO-CCSD(T) energies for closed-shell systems [1]
  • new DFT-D4 dispersion correction based on xTB [2]
  • modernized NMR (with RI-J, COSMO, meta-GGAs, low-order scaling HF-exchange, SMP parallelization) [3]
  • VCD spectra using COSMO
  • periodic DFT with larger basis sets (treatment of linear dependency)
  • two-photon absorption cross sections and analytic frequency-dependent hyperpolarizabilities with TDDFT/TDHF [4]
  • X2C gradients for 1- and 2-component DFT, full X2C and DLU-X2C [5]
  • vibronic absorption/emission spectra (new module: radless) [6]
  • CC2 vertical excited states with COSMO [7]
  • NTO (natural transition orbitals) for TDDFT
  • RI-GW based on dRPA (very fast GW and BSE) [8]
Efficiency:
  • GW and Bethe-Salpeter based on fast dRPA
  • support of RI-J and linear scaling HF exchange in NMR calculations
  • PNO-MP2 closed shell energy calculations significantly more efficient
Usability:
  • new scripts for parallel execution which recognize the most frequently used queuing systems
  • TmoleX 4.4 now supports
    • PNO-MP2, PNO-CCSD, PNO-CCSD(T0) and PNO-CCSD(T)
    • DFT-D4 dispersion correction
    • X2C relativistic two-component treatment for spin-orbit coupling terms, and new X2C basis sets
    • Fukui indices and functions (calculation and visualization)
    • movie exports to mp4 files
    • B97-3c functional


  • G. Schmitz, C. Hättig, D. Tew, Phys. Chem. Chem. Phys. 16, 22167-22178 (2014),
    Explicitly correlated PNO-MP2 and PNO-CCSD and their application to the S66 set and large molecular systems,
    DOI: https://doi.org/10.1039/C4CP03502J

  • E. Caldeweyher, C. Bannwarth, S. Grimme, J. Chem. Phys., 147, 034112, (2017)
    Extension of the D3 dispersion coefficient model,
    DOI: https://doi.org/10.1063/1.4993215
    E. Caldeweyher, S. Ehlert, A. Hansen, H. Neugebauer, S. Grimme, J.Chem. Phys. 2018, in progress.
    C. Bannwarth, S. Ehlert, S. Grimme, J. Chem. Theory Comput. 2018, in progress.

  • K. Reiter, F. Mack, F. Weigend, J. Chem. Theory Comput.,  14(1), 191-197, (2018)
    Calculation of Magnetic Shielding Constants with meta-GGA Functionals Employing the Multipole-Accelerated Resolution of the Identity: Implementation and Assessment of Accuracy and Efficiency
    DOI: https://doi.org/10.1021/acs.jctc.7b01115

  • S. M.  Parker, D. Rappoport, F. Furche, J. Chem. Theory Comput., 14, 807-819, (2018)
    Quadratic Response Properties from TDDFT: Trials and Tribulations,
    DOI: https://doi.org/10.1021/acs.jctc.7b01008

  • Y. J. Franzke, N. Middendorf, F. Weigend, J. Chem. Phys., 148, 104110, (2018)
    Efficient implementation of one- and two-component analytical energy gradients in exact two-component theory
    DOI: https://doi.org/10.1063/1.5022153

  • E. Tapavicza, F. Furche, D. Sundholm, J. Chem. Theory Comput., 12(10), 5058-5066, (2016)
    Importance of Vibronic Effects in the UV–Vis Spectrum of the 7,7,8,8-Tetracyanoquinodimethane Anion
    DOI: https://doi.org/10.1021/acs.jctc.6b00720

  • S. K. Khani, A. M. Khah, C. Haettig, Phys. Chem. Chem. Phys., 20, 16354-16363, (2018)
    COSMO-RI-ADC(2) excitation energies and excited state gradients
    DOI: https://doi.org/10.1039/C8CP00643A

  • C. Holzer, W. Klopper, to be published